
Grant Number NAGS-093

Efficient Parallel Architecture for
Highly Coupled Real-Time Linear System Applications

Chester C. Carroll
Cudworth Professor of Computer Architecture

Abdollah Homaifar
Temporary Visiting Assistant Professor

of Electrical Engineering

and

Soumavo Barua
Graduate Research Assistant

Prepared for

The National Aeronautics and Space Administration

Bureau of Engineering Research
The University of Alabama

January 1988

BER Report No. 419-17

ACKNOWLEDGEMENT

This research was supported by NASA, George C. Marshall Space
Flight Center, Huntsville, Alabama, under Grant Number NAG8-093 and
conducted in the Computer Architecture Research Laboratory in the
College of Engineering at The University of Alabama.

ii

LIST OF ABBREVIATIONS

ABPC

Gals

PE

PIA

RISC

TUS

WSI

FAST

REMPS

Xpn

Xcn

Adams Bashforth Predictor Corrector

Gallium Arsenide

Processing Element

Parallel Integration Algorithm

Reduced Instruction Set Computer

Time Units

Wafer Scale Integration

Flexible Architecture Simulation Task

Reconfigurable Multiprocessor for Scientific
Supercomputing

Predicted value of variable X at the nth
computing interval

Corrected value of variable X at the nth
computing interval

state variable

Control Weighting Matrix

State Weighting Matrix

Terminal State Weighting Matrix

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ii

LIST OF ABBREVIATIONS iii

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT .. viii

CHAPTER 1: INTRODUCTION 1

1.1 Background 1
1.2 Objective 1
1.3 Research phases 2

CHAPTER 2: APPLICATION AND MODEL DEVELOPMENT 5

2.1 Problem Identification 5
2.2 Solution Methods 6
2.3 Parallel Integration Algorithms 8
2.4 The Prototype Problem 10

CHAPTER 3: PARAUZL IMPLEMENTATION 13

3.1 Task Graph Attributes 13
3.2 Task Graph Development 16
3.3 Task Matrix 22
3.4 Scheduling Problem 24
3.5 Scheduling Classification 24
3.6 Approaches in Scheduling 25
3.7 Assumptions in the Scheduling

Algorithm 27
3.8 Scheduling Algorithm 28

CHAPTER 4: SIMULATION AND PERFORMANCE EVALUATION 33

4.1 Performance Evaluation Criterion 33
4.2 Assumptions in Simulation 34
4.3 Results of Simulation 35

CHAPTER 5: ARCHITECTURE AND HARDWARE DESIGNS 40

5.1 Architectural Requirements 40
5.2 PE System Design 41
5.3 Technology Selection 41
5.4 Interconnection and System Layout ... 43
5.5 Future Directions 45

iv

REFERENCES ... 46

APPENDIX A: SOLUTION OF OPTIMAL CONTROL L A W USING
MATRIX RICATTI EQUATIONS 48

APPENDIX B: TASK GRAPH ATTRIBUTES FOR HIGHLY-COUPLED
LINEAR SYSTEM EQUATIONS 52

APPENDIX C: FLOWCHART FOR SCHEDULING ALGORITHM 69

APPENDIX D: SCHEDULER ROUTINE IN PASCAL 76

V

LIST OF TABLES

TABLE

1 .
2 .
3 .
4 .
5 .
6 .
7 .
a .

Page

Node Description for Task Graph 21

Task Matrix for Task Graph 23

Scheduling Techniques 26

Task Graph and Task Matrix 29

Elementary Operation on Task Matrix 30

Elementary Operation on Task Matrix 30

Elementary Operation on Task Matrix 32

Elementary Operation on Task Matrix 32

vi

LIST OF FIGURES

Page

.................... Overview of Research Project 3

Overall Problem Representation 7

Serial Computation Sequence 9

Parallel Computation Sequence 11

Reverse Parallel Computation Sequence 11

Example of a Task Graph 14

.....................

Task Graph Development 17

Function Task Block 18

Task Graph for a Single System Equation 20

1 .1

2 .1

2.2

2 .3

2 .4

3 .1

3 .2

3.3

3.4

4 .1 Processor Execution Time 36

4 . 2 Processor Efficiency 37

4 . 3 Processor Speed Up 39

5 . 1 PE Design Schemata 42

5 . 2 System Architecture Layout 44

vii

ABSTRACT

A systematic procedure has been developed for exploiting

the parallel constructs of computation in a highly coupled,

linear system application. An overall top down design approach

is adopted.

Differential equations governing the application under

consideration are partitioned into subtasks on the basis of a

data flow analysis. The interconnected task units constitute a

task graph which has to be computed in every update interval.

Multiprocessing concepts utilizing parallel integration

algorithms are then applied for efficient task graph execution.

A simple scheduling routine has been developed to handle task

allocation while in the multiprocessor mode.

Results of simulation and scheduling are compared on the

basis of standard performance indices. Processor timing diagrams

have been developed on the basis of program output accruing to

an optimal set of processors.

Basic architectural attributes for implementing the system

is discussed together with suggestions for processing element

design. Emphasis has been placed on flexible architectures that

are capable of accommodating widely varying application

specifics.

v i i i

CEAPTRRl

INTRODUCTION

1.1 Background:

Real-time application algorithms are characterized by complex

and time consuming computations suitable for processing in large

mainframes and associated machines.

constraints would favor the development of small multiprocessor

machines that are capable of exploiting the inherent parallel

constructs of computation [l] . With decreasing hardware costs a

large number of processors may be grouped together to form

specialized processing clusters or modules 121. Flexible

customization methodology may serve to utilize these specialized

hardware modules to achieve computational speeds that are beyond

the limits of uniprocessor sequential methods.

in computing power accompanied by the drastic reduction in cost,

makes parallel processing in multiprocessor environment a

viable option for the critical timing constraints of real-time

applications.

However cost and space

The vast increase

1.2 Objective:

The objective of this research is to develop a systematic

procedure for evolving a computational model that is

1

2

particularly amenable for parallel processing in a

multiprocessor environment. An overall top-down approach (see

Figure 1.1) is adopted. Any real-time system may be represented

in general by a set of differential equations which govern the

dynamic behavior of the system. As a specific example, a

prototype real-time control problem is modeled as a set of

differential equations. These are mapped onto a task graph which

is then allocated to a set of processors in accordance with an

allocation algorithm. This is followed by a verification and

comparison stage wherein the results of such a mapping are

compared with that of traditional uniprocessor methods in terms

of speed up ratio, efficiency and average processor utilization.

Finally, hardware schemata are included for processors and their

design .

1.3 Research Phases:

Research was conducted in the following phases:

1) Problem Identification

2) Task Graph Development

3) Scheduling and Simulation

4) Hardware and software issues

A few simplistic assumptions were made throughout the

overall research. Interprocessor communication time was

neglected in all cases. Although the author acknowledges that

this is not a very practical assumption, the overall performance

improvement would not be greatly undermined even if such delays

are taken into account. Finally , an inexhaustible supply of

APPLICATION REAL TIME TRACKING PROBLEM

TASK GRAPH 0
SCHEDULING AND ALLOCATION

SOFTWARE ISSUES

'\\,

HARDWARE STRUCTURES

Figure 1.1 Overview of Research Project

4

hardware resources has been assumed. The number of available

processors has been treated as a variable parameter which may be

optimized to obtain maximum speed of execution. It is this

singular fact that makes a flexible architecture the best

hardware support for this project.

APPLICATION AND MODEL DEVELOPHEHT

A vast majority of real time control problems can be

represented by a stochastic system of equations and an

associated cost function or performance index. The dynamic

behavior of the system is modeled by a set of linear state

equations of the form:

;(t)=A(t)x(t)+B(t)u(t)

The major objective in such a system model is to obtain the

optimal control law by minimizing the overall cost function 131.

2.1 Problem Identification

A typical class of optimal control problems are of the

tracking type. These are primarily concerned with constraining

the motion of a body in a defined trajectory and are widely used

in attitude control of rocket, missile guidance, aircraft

landing analysis etc. The cost function to be minimized for

optimal control is commonly represented as:

5

6

Modern control theory suggests two principle ways of

solving such problems (Appendix A). One convenient technique is

the generation of a set of first order differential equations

known as the Matrix Ricatti Differential Equations (see Figure

2.1) having a form :

K=-K(t)A(t)-AT(t)K(t)-Q(t)+K(t)B(t)R-'(t)BT(t)K(t)

;(t)=- [AT(t)-K(t)B(t)R'l(t)BT(t)]s(t)tQ(t)r(t)

It may be easily proved that if K is a "n by n" symmetric matrix

and s is a % by 1" vector , then the above matrix equations

reduce to a set of "n(n+l)/2+n" first order differential

equations which have to be solved in real time.With large values

of "n" as is true for most practical systems ,-an inconveniently

large set of equations is obtained. Even with available current

technology, it requires a mini supercomputer to perform the

necessary computations.

2.2 Solution Methods

Several standard software routines using Runge Kutta

Method, Adams Bashforth Method is available for solving

differential equations and may be applied to the solution of

Matrix Ricatti Equation. However, these are sequential

techniques with a set limitation on execution speed. By

employing parallel integration algorithms (PIA) it is possible

to obtain a greater throughput while maintaining the same level

of accuracy [4] . The method presented here is a modified version

of that proposed by Willard L. Miranker and Werner Linigar [5].

7

K IS SYMMETRIC MATRIX
s IS A N BY 1 VECTOR
A SET OF N(N + 1)/2+ N FIRST
ORDER DIFFERENTIAL EQUATIONS
HAVE TO BE SOLVED

STOCHASTIC SYSTEM EQUATIONS
&

COST FUNCTION

K = -KA-A~K-Q + KBR"B~K

S= -(AT-KBR"B~)s + QR

ALGEBRAIC MANIPULATIONS
RELEVANT TO OPTIMAL CONTROL
THEORY

RZCONTROL WEIGHTING MATRIX

H =TERMINAL STATE WEIGHTING
Q = STATE WEIGHTING MATRIX

MATRIX

MATRIX RlCATTl DIFFERENTIAL I EQUATION

SOLVE FOR K,s MATRICES USING I INITIAL CONDITIONS

I
OPTIMAL CONTROL LAW AS A

FUNCTION OF
K,S AND X

SUBSTITUTION

~~

FIGURE 2.1 Overall Problem Representation

a

A modification is necessary as the aforementioned authors

developed their algorithm for standard differential equations

which are typically initial value problems as opposed to the

Matrix Ricatti Equations where the integration has to be carried

out backwards in time.

2.3 Parallel Integration Algorithm

A widely used technique for solving differential

equations is the Adam Bashforth Predictor Corrector (ABPC)

method. For a general problem of the type

the differential equations for a two step ABPC method are given

YC*-l + h/2 [3 f cn- 1 fen-2 I

where h = step increment = % / (n-1);

It is apparent that the predicted value at the (nIth step

is used in the next step to compute the corrected value at the

(n)th step.

Figure 2 .2) . The "P" and "C" lines denote the predicted and

corrected values of the function. A hypothetical computation

front is indicated by means of a dotted line. The directed line

segments display that at the (nlth mesh point , results flow in

from both sides of the computation front thereby precluding any

chances of simultaneous prediction and correction.

The sequence of computation is schematized (see

9

1

I

1
1
I
I

1 e C 0 a

n-2 n- 1 1 n

Figure 2.2 Serial Computation Sequence

10

A suitable modification converts this sequential technique

into an effective PIA. The modified equations are:

The computation front and associated sequence of

computation are shown (see Figure 2 . 3) . The arrows indicate that

calculation at any step depends only on information at previous

mesh points. This implies that the parallel implementation

simultaneously accommodates prediction at the (nlth step and

correction at the (n-llth mesh point and thus may be executed in

parallel on two arithmetic processors.

Application of this technique to the solution of Matrix

Ricatti equations necessitates the computation front to proceed

backward in time. For this purpose the aforementioned parallel

differential equations are modified to yield :

9'n-2

The corresponding computation front has also been shown

Figure 2 . 4) .

(see

2.4 The Prototype Roblem

A prototype reflects an actual problem area with all its

attributes but in smaller dimensions. It provides the researcher

with a congenial environment to experiment novel schemes. In

/

/ I

11

P

/
/

Figure 2.3 Parallel

\

Computation Sequence

\ . .

C

Figure 2.4 Reverse Parallel Computation Sequence

12

this thesis, a prototype tracking problem has been considered so

as to illustrate the basic concepts and ideas that were

developed in course of research.

The system to be controlled is assumed to be represented by

two state equations:

= q(t)

The performance index to be minimized is

J(U) = - 0.2tI2 + 0.025u2(t)}dt

In this problem the major objective is to maintain the

state x1 close to the ramp function rl(t) = 0.2t. The Matrix

Ricatti equations for such a system are :

si(t) = 2 [10 k12(t) - 1] ~2(t) + 0.4t

All the equations in the above set are cross coupled.

However, the computational parallelism inherent in the equations

may be exploited to obtain a higher throughput. This is

discussed in the next chapter.

One of the important potentials of multiprocessor systems

is the ability to speed up computation by concurrently

processing independent portions of a given assignment [l, 111.

Extensive research is being carried out to develop mathematical

models that can be solved efficiently on parallel processors

[6]. The first step in developing such multiprocessor models is

to identify the parallelism within the mathematical formulation

of the problem. This necessitates a data flow analysis of the

problem with a subsequent evolution of a '' task graph ". This is
then allocated to a set of processors by means of a scheduling

algorithm so as to obtain minimum achievable execution time.

3.1 Task Graph Attributes

A task graph represents a set of "jobs" or "computation

units" arranged in accordance with certain precedence

constraints. Such a set is generally described by a "finite

directed acyclic graph" 171 and is assumed to have single entry

and terminal nodes through which all other nodes may be

accessed. Task execution times are represented by node weights

[8]. An example of a task graph is shown (see Figure 3.1).

In most practical problems, the mathematical nature of the

model yields a set of closely coupled equations as is also true

13

14

Figure 3.1 Example of a Task Graph

15

for the prototype problem under consideration. Hence it becomes

a difficult task to identify not only the areas of mathematical

parallelism [6] but also integrate these with solution

techniques (like ABPC) under consideration.

A few important notions must be explicitly stated before

any attempt is made to outline a systematic procedure for task

graph development.

A "data flow graph" is very similar to a task graph except

that the latter precludes all logical constructs of an incumbent

program. In its simplest form, a task graph reflects an attempt

to partition computation tasks in an optimum manner without any

reference to logic statements which may have a representation in

an equivalent data flow graph.

Being very closely related to the mathematical model of the

system, a task graph is unique and specific to a particular

application. The same system under different functional

operations may require an entirely different task layout.

Even by partitioning the system model into several

independent paths which may be computed in parallel, there

exists a "critical path" which presents a set ''lower limit" on

the minimum achievable execution time. No amount of task

decentralization in the form of a well balanced task graph or

processor computing power can overcome the timing constraints

set by the critical path. It is imperative that the update

interval of data is greater than or atmost equal to the

calculation time of the critical path.

16

3.2 Task Graph Development

A top-down design strategy is adopted in task graph

development (see Figure 3.2). The system differential equations

are partitioned and combined with standard integration

techniques (ABPC in this case) to yield a set of difference

equations. Subsequently, a data flow analysis is made wherein

each difference equation is further broken up into simpler

computation units in consonance with the mathematical attributes

of the system. This procedure of task fragmentation is

repeatedly continued till elementary computer operations

(addition, subtraction, multiplication and division) or basic

task units result. These are all interconnected and yield a

complex mesh which is collectively called the "task graph" for

the application under consideration. An attempt is made to keep

the overall task graph reasonably balanced so as to preclude

possibilities of unduly long critical paths.

To illustrate the above concepts, let us consider one of

the differential equations having a high degree of cross

coupling:

The first step is to make a data flow analysis for the equation

above. This is done by constructing a function task block l'f12''

(see figure 3.3). The nodes in the first level are either data

constants or values of "k12" and "k-72" at the previous update

interval. The subsequent levels keep a numerical count of the

elementary operations involved with "l*" within a node

17

TASK GRAPH DEVELOPMENT

DESIGN STRATEGY: TOP - DOWN APPROACH.

SYSTEM DIFFERENTIAL] STANDARD TECHNIQUE 1
1 EQUATIONS J lOF NUMERICAL INTEGRATION I

DIFFER EN CE EQU AT1 0 N S m
FRAGMENTATION OF I COMPUTATION STEPS

1 v

MESH OF ELEMENTARY
OPERATIONS

r

TASK GRAPH

TASK MATRIX

INPUT TO ALLOCATION
ALGORITHM

Figure 3.2 Task Graph Development

18

1+, 2- u !

Figure 3.3 Function t a s k block

19

indicating one multiplication. Similarly, 1+,2- indicates a

total of three operations comprising of one addition and two

subtractions. Task time is counted on the basis of "time units"

or "Us. Multiplication and division are assigned a weightage of

3 "Us compared to addition and subtraction which take 2 TUs. The

function task block has a total count of 6 operations equaling

at least 15 TUs.

.

The given equation along with the function task block must

be integrated with the ABPC method. The difference equation to

be solved becomes:

Again on the basis of data flow, a track of the flow of

computation is maintained and the resulting interconnected mesh

of simple operations obtained constitutes the task graph for the

equation in question (see figure 3 . 4) . An interesting feature of

this task graph is that it is non terminating in nature. Apart

from the data constants, the parameter values are updated in

every sampling interval. The systematic node description for the

task graph under consideration is shown in Table 1. Each

differential equation of the original set is thus fragmented to

yield a sub task graph which are then interlinked to yield the

overall task graph for the system. This has been shown in

Appendix B.

20

c
0

21

TABLE I

NODE DESCRIPTION FOR TASK GRAPH IN FIGURE 3 . 4

Node No. Parameter Operation

2
3
4
5
6
7
8
9

10
11
12
"1 3
14
15
16
17
18

h=constant
2=data constant

20=data constant
f (k12) cn
0.0

;;op

NOP
Load
Load
Load
NOP

Load

/
*
Load *.

4-
*

Load .
Load

. . .

22

3.3 Task Natrix

A task graph for a practical problem is quite imposing in

its complexity. A "Task Matrix" offers a convenient and concise

technique for representing a task graph and at the same time

maintains all precedence constraints. For a faithful

representation, a task matrix should have the following fields:

1) Task Field (T): It indicates the task number.

2) Task Enable Field (E): It can assume only two

values - a "HI" indicated by binary "1" and a "LO" indicated by
a binary "0". Whenever E=l, the corresponding task is enabled.

3) Pending Task Queue Field (Q): It represents the

number of tasks pending at each node. It provides a count of the

immediate predecessor tasks that have to be executed prior to

self execution. A task unit at a particular level in the task

graph may be enabled only if the corresponding value of Q = 0.

4) Successor Field (S): This is in array field

which keeps track of the number of immediate successor tasks at

each node.

5) Weight Field (W): It shows the time taken for a

task defined by the node under consideration to execute. The

weight field is assigned arbitrarily as the speed of execution

tends to vary with hardware features of the selected processor.

However reasonable assumptions are made while assigning weights,

e.g., task unit defining multiplication must have a larger

execution time compared that which defines addition.

The task matrix table for the task graph in Figure 3.1 is

shown (see Table 2) . The tasks are numbered from "1" to "8" with

23

TABLE 2

TASK MATRIX FOR TASK GRAPH IN FIGURE 3.1

T E Q S W

1 1 0 4 X

2 1 0 4 X

3 1 0 596 X

4 0 2 7 X

5 0 1 8 X

6 0 1 X

7 0 1 X

8 0 1 X

T = TASK NUMBER FIELD.
E = TASK ENABLE FIELD.
Q = PENDING TASK QUEUE FIELD.
S = SUCCESSOR TASK FIELD.
W = WEIGHT FIELD.
X = DON’T CARE.

- 5 -

24

weights being "don't care" denoted by "X". "0" represents the

input node whereas "*" denotes the terminal node. During start
of execution any one of the tasks 1,2 and 3 may be executed.and

this is indicated by E = 1 and Q = 0 in corresponding fields.

Task 4 has Q = 2 because it has two immediate pending or

predecessor tasks in tasks 1 and 2. Tasks 5 and 6 are the

successors of task 3 as shown in the S field. Tasks 6,7 and 8

terminate in the output node indicated by "*".

3.4 Scheduling Problem

The scheduling problem primarily deals with resource

optimization. Stated simply it reduces to " Given a set of tasks

or computations along with a set of operational precedence

relationships that exist between a certain of these tasks, and

given a set of *k' identical processors, how does one sequence

or schedule these tasks on the 'k' processors so that they

execute in minimum time?" [8] . By definition a 'scheduler' is an

algorithm that uniquely specifies which job unit is to be

serviced next by a resource [l o] and to this end, an efficient

scheduling algorithm need be developed which undertakes

efficient task allocat,ion and sequencing. Problems of this type

are commonly referred to as "minimum execution time

multiprocessor scheduling problem" [7].

3.5 Scheduling Classification

Task scheduling by itself forms an interesting area of

research and draws heavily on concepts of graph theory and

operations research. A number of scheduling strategies are in

25

vogue (see Table 3), each being suitable for a specific

application. The major class of schedulers are categorized as

pre-emptive or non pre-emptive.

A pre-emptive scheduler is capable of selecting and

assigning a job to a server at any time irrespective of job

completion, that is, a pre-emptive scheduler assumes that jobs

are interruptible and will do so if another job of higher

priority needs service. The overall flexibility of the schedule

increases due to pre-emption but at the cost of hardware

overhead and job "set-up" time. On the contrary, a non pre-

emptive scheduler allows no job-switching, that is, once a job

is assigned to a resource it has to be executed before another

job can be accommodated even though it may have a higher

priority.

3.6 Approaches to the Scheduling Algoritbm

The scheduling problem may be approached from two different

angles.

(1) Given a task graph and a set of -k' processors, a

task assignment routine has to be developed that yields a

description of the tasks done by each processor as a function of

time. It ensures an optimum processor packing of task units so

as to yield maximum resource utilization and at the same time

attain a maximum speed of execution.

(2) Given a task graph, the scheduler keeps the

option of available hardware open and selects an optimum number

of processors for executing the task graph in minimum time. The

26

TABLE 3

SCHEDULING TECHNIQUES

Scheduler Name Type of Operation

FCFS First-come-first-served

SXFS Shortest-job-first

LCFS Least-completed-first

EDFS Earliestdue-time-first

HSFS Highest-static-priority-first

RR Round robin

27

number of available processors in this case is a variable

parameter which is optimally selected by the scheduling

algorithm. This approach pre-supposes a flexible architecture

for its realization since it needs a variable number of

processors and sacrifices hardware utilization to get a higher

throughput.

The scheduling algorithm that is developed is primarily

based on the aforementioned second approach.

3.7 Assumptions in developing the Scheduling Algorithm

The scheduling algorithm developed is based on the

following assumptions:

1) Scheduling is non pre-emptive and all task

allocation is static.

2)

3) Interprocessor and intraprocessor communication

Execution time of each task is known apriori.

times are negligible.

4) Task weights are assigned arbitrarily but

uniformity is maintained between comparable tasks. Tasks

requiring longer CPU time (like multiplication) have been

assigned larger weights compared to tasks requiring lower CPU

time (like register move, addition etc.). Such arbitrariness is

primarily due to lack of well defined execution-time standards

on account of the widely varying

currently. Moreover, conceptually the algorithmic implementation

is independent of the weights assigned to the task units.

processor types available

28

3.8 Scheduling Algorithm

The scheduling algorithm (originally credited to Oschner)

maps the task graph onto a task matrix and seeks to obtain an

optimum schedule by means of elementary operations on the task

matrix. The step by step detail for the algorithm is as follows:

A task matrix is defined by five fields T,E,Q,S,W.

A task is enabled only when E-1 and 0-0

An enabled task can be allocated to a free PE

1)

2)

3)

only.

4) A task unit assigned to a PE has its E field

decremented to zero, that is, E=O for an assigned task unit.

5) After task completion, the successor or S field of

the task is examined so as to decrement the Q field of each

successor.

6)

decrement are enabled.

7)

8)

All successor tasks having 9-0 as a result of

Repeated execution whenever a PE becomes idle.

Scheduling is complete when all tasks have E=O and

Q=O .
As a specific example, a simple task graph and associated

task matrix is considered (see Table 4) . Initially any one of

tasks 1, 2 and 3 may be allocated depending on the number of

processors available. Assuming that all tasks are assigned,

execution (timegrocessing in Pascal routine - Appendix D)

begins and the respective "E" fields are reduced to zero (see

Table 5). Task 1 having minimum weight is completed first so

that the PE to which it is assigned is the first to become idle.

2 9

TABLE 4

TASK GRAPH AND TASK MATRIX

T E Q S W
~~

1 1 0 4 10

2 1 0 4 20

3 1 0 30

4 0 2 10 t

30

TABLE 5

ELEMENTARY OPERATION ON TASK

MATRIX

T E Q S W

1 0 0 4 10

2 0 0 4 20

3 0 0 30

4 0 2 10

TABLE 6

ELEMENTARY OPERATION ON TASK

MATRIX

T E Q S W

1 0 0 4 10

2 0 0 4 20

3 0 0 30

4 0 1 10

31

When this stage is reached, the scheduling process takes over.

The successor field of task 1 is examined which points to task

4 . The scheduler now decrements the Q field of task 4 thereby

making it equal to 1 (see table 6).

Even though task 1 is complete, task 4 cannot be assigned

until task 2 ends. So task execution starts again with PE to

which task 1 was assigned remaining idle. When task 2 is

completed, the scheduler looks at the corresponding S field

which again points to task 4 . The Q field of task 4 is

decremented to zero as a result. The scheduler now sets the E

field of task 4 thereby enabling it (see Table 7). Task 4 is

assigned to an available PE and its E field is reduced to zero.

When all tasks have been assigned and execution is complete, the

E and Q fields of all tasks equal zero and the resulting task

matrix is shown in Table 8.

From this example, it becomes clear that by elementary

operations (like look up, decrement etc.) it is possible to

keep a dynamic track of a variable number of tasks and PES. The

resulting information is adequate to set up a timing diagram or

"Gantt Chart" schedule for each PE which is of considerable help

in calculating the overall time necessary to execute the task

graph. By the varying the number of processors used,

considerable insight on overall performance is obtained. These

factors are discussed subsequently.

32

I

TABLE 7

ELEMENTARY OPERATION ON TASK

MATRIX

T E Q S W

1 0 0 4 10

2 0 0 4 20

3 0 0 30

4 1 0 10

TABLE 8

ELEMENTARY OPERATION ON TASK

MATRIX

T E Q S W

SIMULATION AND PgRpORHANcE EVALUATION

The evaluation of a computer system generally involves the

following classes of considerations:

1) Performance

2) cost

3) User convenience

4) Reliability

An attempt is made here to provide a critical appraisal of

overall performance improvement when the system under

consideration is subjected to the previously described parallel

model of implementation.

4.1 Performance Evaluation Criterion

The primary requirements for performance evaluation are:

1) Analysis

2) Simulation

3) Measurements

Analysis and simulation is accomplished by partitioning the

system differential equations into task units which are then

allocated to a variable set of processors. The merit of the

scheme is judged on the basis of the following performance

indices :

33

34

. 1) Execution time

2) Percentage speed-up

3) Percentage efficiency

Execution time may be defined as the time required by a

given set of processors to execute the task graph in question.

For a real-time control problem, the execution time is of great

significance and must be-less than the periodic update time.

The increase in speed of computation with a larger number

of processors compared to that of an uniprocessor is generally

denoted by the percentage speed-up factor. If "t" is the time

required to execute a task graph using a set of

and ltmtt equals the time to do the same using a single processor,

then speed-up factor [9] is given by:

"p" processors

speed-up = (m / t)

The percentage efficiency shows the overall resource

utilization for a parallel implementation. Mathematically,

X efficiency = (m / tp) * 100

Percentage efficiency is a measure of the idle time of the PES.

It has a value of 100% for an uniprocessor system as can be

verified from the mathematical expression.

4.2 Assumptions in Simulation

To facilitate and simplify analysis, the following model

for a parallel implementation is adopted:

1) an unlimited number of processors is available.

35

2) each PE is capable of evaluating any of the four

fundamental arithmetic operations (+, -, *, />.

3) data and memory alignment times are neglected.

Although assumptions 1) and 3) appear unrealistic,

decreasing hardware costs are giving rise to large

multiprocessor systems which have almost an unlimited number of

processors , eg., The Hypercube, The Butterfly Computer which

has 256 PES with scope for further expansion. Similarly, data

and memory time penalties simply offset the computation results

by a fixed factor and therefore do not form a barrier to the

conceptual implementation of a parallel model.

4.3 R e s u l t s of Simulation

The task flow pattern for the linear system is simulated

using a variable number of PES and at each stage the

aforementioned performance indices are recorded. A graphical

representation of these indicate interesting highlights .
The execution time curve (see Figure 4.1) droops sharply

as the number of processors increase showing that with increase

in the number of PES the task completion time rapidly decreases.

The curve has a characteristic hump in the vicinity of ten PES.

Any further attempt to boost computing power by increasing the

number of PES has negligible effect thereby indicating that time

corresponding to critical path has been reached.

The percentage efficiency curve (see figure 4.2) initially

remains at a high value which implies that available tasks are

adequate to keep the set of processors occupied throughout the

2 15

165

65

15

P R O C E S S O R P E R F O R M A N C E

1 2 3 4 5 6 7 0 9 1 0 1 1 1 2 1 3 1 4 1 5

NOOFPROCESSORS

Figure 4.1 Processor Execution Time

37

90

80

70

60

50

40

30

r 20

P R O C E S S O R P E R F O R I A N C E

100

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

NO OF PROCESSORS

Figure 4 . 2 Processor Efficiency

update interval. However, for more than five PES it rapidly

decreases owing to the idle time generated. This trend continues

till for ten PES the curve has a local maxima corresponding to a

percentage efficiency of approximately 85X. Beyond this, the

efficiency curve again toggles down. The logical inference drawn

is that for a set of ten PES a compromise is affected between

idle time and speed of execution whereby resource efficiency is

sacrificed to obtain a greater speed advantage. This is also

corroborated by the speed up curve (see Figure 4 . 3) which

indicates that beyond ten PES the speed up ratio remains

unaltered. The performance indices therefore point to ten PES as

an optimum selection for the task graph under consideration. The

task allocation scheme for the optimum number of PES is

generated as output by the scheduling program. A Gantt Chart or

a processor timing diagram can be set up from the results. It

may be noted that a close processor

overall idle time is negligible. The task graph, task matrix,

program output and Gantt chart are listed in Appendix B.

packing of tasks exist and

39

0

7

6

2
a 5

2

I

w w
4

3

2

1

0

P R O C E S S O R P E R F O R M A N C E

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

NO OF PROCESSORS

Figure 4.3 Processor Speed-Up

AR- AND HARDWARE DESIGN

Conventional computers solve problems one step at a time.

Advanced parallel computers are able to execute independent

parts of the problem concurrently thereby reducing overall

execution time [13] . The success of a parallel implementation

depends entirely on the hardware support and to this end an

efficient architecture is proposed.

5.1 Architectural Requirements

Computer architecture encompasses a very wide area of

knowledge bounded by ever changing innovations. It is extremely

difficult to define all attributes necessary to justify a

particular architecture. In this thesis research, a

multiprocessor parallel algorithmic implementation has been

proposed which in turn needs a truly parallel hardware back up.

Flexibility is one of most desirable features for such an

architecture. A task graph corresponds uniquely to an

application . Any changes in application demands a new task
graph which in turn requires an altered hardware support.

Hence, a truly parallel machine must have hardware upgradability

and reconfigurability. Popular parallel machines like the

Butterfly Computer, Hypercube, REMPS [1 4 , 151 etc. incorporate

40

41

this philosophy. Current researches on the FAST at the

University of Alabama also re-emphasizes this point.

The PE system architecture must have a high degree of

pipelining to reduce intermediate idle time. It is also

imperative for each PE to have an on-chip in addition to global

memory. This reduces the conventional "Von Neumann" bottleneck

and increases computing power.

5.2 Pg system Design

A large number of PES with excellent functional features

are currently available [16, 171. However, a futuristic PE

design is proposed here (see Figure 5.1). A gallium arsenide

RISC engine is coupled with a floating point coprocessor unit

and constitutes the core of the processing element [18, 191.

These are connected by instruction and data buses to respective

caches which virtually eliminates all global memory accesses

except perhaps at the pre-processing stage [20] . Separate

instruction and data caches reduce cache-contention and internal

bus traffic. The PE interfaces with the system bus u s i n g I:. bus

controller.

5.3 Technology Selection

An ambitious proposition using WSI GaAs is recommended.

Although a great majority of the integrated circuits are

fabricated with silicon, GaAs technology offers several

advantages [20] :

1)

fastest silicon chips.

GaAs chips are five to ten times faster than

4 2

I I-

I

I

I
I

I

I

I
I

I

I
I

I
I

I
L

- 1 I I

I

To System Bus

I
I

I

1

I

I

I
I
1
I
I - - - - - - - - + - - - - - - - - - - -

FPU = Floating Point Unit
CC = Cache Controller
MMU = Memory Management Unit
BC = Bus Controller
CAMMU = Cache and Memory Management Unit

Figure 5.1 PE Design Schemata

43

2) It is radiation "hard" and operates over a wide

temperature range (-2000~ to +2000c).

3) It is also better suited for efficient

integration with electronic and optical components.

Although high cost and low levels of integration are major

drawbacks, these are expected to be eliminated as the technology

matures.

Wafer-scale-integration denotes the level of integration

attained when an entire wafer is used is used to fabricate a

circuit. Currently WSI is the highest level of integration for

monolithic circuits [21]. The technology is still plagued by

problems of heat dissipation and low production yield. However,

higher attainable density levels and fewer off chip connections

are major factors in proposing this futuristic technology that

has already started making inroads in the chip market [22].

5.4 Interconnection and System Layout

A hierarchical fiber optic star (see Figure 5 .2) is

proposed as a suitable.system layout and corresponds to the FAST

architecture [23]. Such a structure is easily expandable and

provides an inexhaustible source of computing power. Each

tentacle of the star ends in individual processing modules which

may be specialized to perform functions like error checking,

I / O , communication, numeric processing etc. Such a system has

the option of having heterogeneous modules or homogeneous

modules depending upon the application. Each fiber optic star

cluster may be configured to form specialized hardware modules

0

rl tu

X
O

0
4
U a
P

k
a
Y
m

3
AJ
i, al u

.rl c u
k

45

for efficient task execution. Optical fiber communication links

are optimally compatible with GaAs WSI technology and is

sufficient to meet the highest transfer rates [24].

5.5 Future Directions

Although a futuristic hardware support is proposed,

architectural innovations may still be implemented to attain

higher modularity and efficiency. Considerable work needs to be

done in the development of parallel software bases which still

happens to be inherently sequential [25] . The setting up of a

task graph for different applications is wasteful of manhours.

Automated software packages need to be developed for performing

domain and functional decomposition. The future will undoubtedly

be affected by improvements in semiconductor technology.

However, any drastic performance improvement would need a

technological breakthrough, like the development of high

temperature superconductors etc., but the basic tenets of

parallel processing are going to hold good for some time to

come.

4 6

REFERENCES

G. C. Fox and P. C. Messina, "Advanced Computer
Architectures", Scientific American, vol 257, pp. 67-75,
October 1987.

D. Peng and K. G. Shin, "Modelling of Concurrent Task
Execution in a Distributed System for Real-Time Control",
IEEE Transactions on Computers, vol. c36, no.4, pp. 500-
516, April 1987.

Optimal Control Theory - An Introduction ; by Donald E.
Kirk; Prentice-Hall; 1970.

L. G. Birta and 0. Abou Rabia, Parallel Block Predictor-
Corrector Methods for ODES", IEEE Transactions on
Computers, vol. c36, no.4, pp. 299-311, March 1987.

W. L. Miranker and W. Liniger, "Parallel Methods for
the Numerical Integration of Ordinary Differential
Equations", Math. Comput., vol. 21, pp. 303-320, Nov. 1967

D. J. Arpasi and E. J. Milner, "Mathematical Model
Partitioning and Packing for Parallel Computer
Calculation", pp. 67-74, NASA TM-87170

H. Kasahara and S. Narita, "Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel
Processing", IEEE Transactions on Computers, vol. c33,
no.11, pp. 1023-1029, Nov. 1984

R. R. Muntz and E. G. Coffman, Jr., "Optimal Premptive
Scheduling on Two - Processor Systems", IEEE
Transactions on Computers, vol. c18, no.11, pp. 1014
-1020, Nov. 1969.

C. V. Ramamoorthy, K . M. Chandy, and M. J.
Gonzalez, "Optimal Scheduling Strategies in a
Multiprocessor System", IEEE Transactions on
Computers, vol. c21, no.2, pp. 137-146, Feb. 1972.

Introduction to the Design and Analysis of Algorithms;
by S. E. Goodman and S. T. Hedetniemi; McGraw Hill Book
Company; 1977.

Computer System Performance; by H. Hellerman and
T. F. Conroy; McGraw Hill Book Company; 1975.

A. H. Sameh, I' Numerical Parallel Algorithms - A
Survey", High Speed Computer and Organization, pp. 207-228,
1977.

4 7

[13] R. Cytron, Useful Parallelism in Multiprocessing
Environment", Proceedings of the 1985 International
Conference on Parallel Processing, pp. 450-457.

1141 K. Hwang and Z. Xu, '' REMPS: A Reconfigurable
Multiprocessor for Scientific Supercomputing", Proceedings
of the 1985 International Conference on Parallel
Processing, pp. 102-111.

[15] J. C. Peterson, J. 0. Tuazon, D. Lieberman and M. Pniel,
"The Mark I11 Hypercube-Ensemble Concurrent Computer",
Proceedings of the 1985 International Conference on
Parallel Processing, pp. 71-73.

[16] R. P. Bianchini and J. P. Shen, "Interprocessor Traffic
Scheduling Algorithms for Multiple-Processor Networks",
IEEE Transactions on Computers, vol. c36, no.4, pp. 396-
409, April 1987.

[17] T. L. Johnson, "The RISC/CISC Melting Pot", BYTE, pp. 153-
160, April 1987.

1181 J. F. Mcdonald, H. J. Greub, R. H. Steinworth, B. J.
Donlan and A. S. Bergendahl, "Wafer Scale Interconnections
for GaAs Packaging - Application to RISC Architecture",
IEFX Computer, pp. 21-34, April 1987.

[19] V. Milutinovic, "An Introduction to GaAs microprocessor
architecture for VLSI", IEEE Computer, pp. 30-42, March
1986.

1201 V. Milutinovic, '' GaAs Microprocessor Technology", IEEE
Computer", pp. 10-13, October 1986.

[211 J. F. Mcdonald, The Trials of Wafer-Scale Integration",
IEEE Spectrum, pp. 32-39, October 1984.

[22] R. 0. Carlson, "Future trends in Wafer-Scale Integration",
Proceedings of the IEEE, pp. 1741-1752, December 1986.

[23] L. D. Huthceson, "Optical interconnects replace hardwire",
IEEE Spectrum, pp. 30-35, March 1987.

[241 D. H. Hartman, "An effective lateral fiber-optic
electronic coupling and packaging technique suitable for
VHSIC applications, Journal of Lightwave Technology, pp.
73-81, Jan 1986.

[251 A. H. Karp, "Programming for Parallelism", IEEE Computer,
pp. 43-56, May 1987.

APPENDIX A

SOLUTION METHOD FOR OPTIMAL CONTROL PRO- USING
PWRlX RICATTI EQUATIONS

Several techniques are available for the solution of

optimal control problems. A widely used method involves the

setting up of Matrix Ricatti equations.

The state equations are :

and the performance measure to be minimised is

where r(t) is the desired value of the state vector. H and Q are

positive semidefinite matrices, and R is real symmetric and

positive definite. .The final time "tf" is fixed.

The Hamiltonian is given by

h(dt),u(t),p(t)st) = 0.5 Ildt) - dt)$(t)

llu(fR(t) + p T(t)A(t)x(t) +p T(t)B(t)u(t)

The costate equations are

and the algebraic relations to be satisfied are

4 9

0 = R(t)u*(t) + BT(t)p*(t)

50

I

This yields the optimal control law in terms of the costate

equation as

u*(t) = -R-l(t)BT(t)p*(t)

Instead of computing the STM, an easier computational

alternative is to express

Differentiating both sides with respect to "t", we get

* Substituting for i*(t) and i*(t) and then eliminating p (t),

the following equations, conmonly referred to as the Matrix

Ricatti equations, are obtained

K(th -X(t)A(t) - AT(t)K(t) - Q(t) + K(t)B(t)R"(t)BT(t)K(t)

and

&t) = -[AT(t) - K(t)B(t)R'l(t)BT(t)]s(t) + Q(t)r(t)

I t I t K is a symmetric matrix of order "n" by 'In" and "s" is a

I t I t n by 1 vector. Hence a set of "[n{n+l)/2]+n" first-order

differential equations need to solved. The boundary conditions

are

51

As all x*(tf) and r(tf) satisfy these equations, the boundary

conditions are

and

The optimal control law may be computed from the values of

"K" and "s" by means of standard integration techniques.

APPENDIX B

TASK GRAPE ATJXIBUTFS FOR HIGBLY-COUPLKD
LINEAR SYSTEW EQUATIONS

53

54

Node N o . Parameter Operat ion

7

8

9

1 0

11

1 2

1 3

14

15

16

17

18

1 9

20

Load

Load

Load

Load

Load

Load

Load

Load

Load

Load

f u n c t i o n
sub ta sk

II

II

I1

I1

11

NodeDescr ip t ion f o r System Task Graph

55

Node no. Parameter Operation

21
22
23
24
25
26
2 7

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

+
*
+
*
+
*
+
*
+
*
*
-
*
-
*
-
*

Node Description for System Task Graph

56

45

57

58

60

61

6 2-

63

6 4

6 5 '

1
1
1
13
13
18
15
le
13
10
16
1 0
16 -
L
-7
4

2
3
2

2
3
2
3
3
2

-7 4

-?
3

CL CI

3

3
2
3

2

2

2

c.) CL

c.)
L

rn
L

r) CL

66

TASK ALLOCAT I ON

THE PJUMEEF; O F FcROCESSORS USED= it:)

THE NUMEER O F OEFINEO TASI.::S=45

p r o c e s s o r C 1 1 assigned task C l l
processor C 2 1 a s s i g n e d task t 2 1
p r o c e s s o r CZJ a s s i g n e d task C 3 1
p r o c e s s o r C 4 1 a s s i g n e d task C 4 1
p r o c e s s o r C51 a s s i g n e d task C51
processor Cbl a s s i g n e d task C 6 1
p r o c e s s o r C'71 a s s i g n e d task C71
p i - u c e s s o r C 8 3 a s z i g n e d task C 8 1
p r s c e s s o r C 9 3 a s s i q n e d task:: C'?:!
p r o c e s s o r C 1 5 1 a s s i g n e d tasl:: C 1 0 1
p r o c s s s o r i 1 3 a s s i g n e d task [I l l
processor t Z 3 a s . s i g n e d t a d : t 121
p r a c e s s o r i 3 1 a s s i g n e d task: C 1 Z 3
processor C 4 1 a s s i g n e d tasi:: C 1 4 1
p r o c e s s o r E 5 1 a s s i g n e d task C 1 5 1
processor Cbl a s s i g n e d task C 1 6 1
p r o c e s s c r C 7 1 a s s i g n e d task:: C 1 7 1
processor C 8 1 a s z i g n e d t a s k : I: !81
p r o c e s s o r C 4 1 sssigned tztsC;: C 1 4 2
processor C I C 1 as;si gned ~as1:: C2!::jl
p r o c e s s o r C 7 2 assigned task:: C272
praces ; - ,o r CY:! assigned task: C 2 8 1
p r o c e s s o r C 7 1 a s ; s i g n e d task L 3 7 1
proce.s.sor C 1 1 a s s i g n e d task: E 2 1 1
p r o c e s s o r C21 a s s i g n e d task C223
processor C 9 1 a s s i g n e d task: C381
p r o c e s s o r C I I a s s i g n e d task: C2Jl
p r o c e s s o r C 4 1 a s s i g n e d tasI:: C X l
p r o c e s s o r Ccj3 a s s i g n e d task C 3 1 1
processor E71 a s s i g n e d ta,iiI:: C441
p r o c e s s o r number C Y 1 i d l e fc j r 1 TUS
p r a c e s s n r CZI a s s i g n e d tasi.:: C291
p r o c e s s o r C 8 1 a s s i g n e d ts.sC:! C3i31
processor C91 a s s i g n e d task: C 3 2 1
p r o c e s s o r number CiC!I i d l e fo r 1 T U S
processor C 1 1 a s s i g n e d task:: C351
p r o c e s s o r number C'71 id l e .for 1 T U S
pracessor number C1C:il i d l e f o r 2 TlJS
p r o c e s s i i l r CZI ass1 gned tasC:: CX33
p r o c e s s o r C 3 1 aszigned task:: C 2 4 1
p r o c e s s o r C47 assigned task C 3 b J
p r o c e s s o r CS1 a s s i g n e d task C391
p r o c e s s o r C&l a s s i q n e d t a s k C4311

67

pr-ocessor number C 7 3 i d l e +o r 2 TUS
procassor number C 9 1 i d l e +o r 1 T U S
processor number E l 0 3 i d l e f o r 3 TUS
processor C 7 1 assigned task C 4 0 1
processor number C 8 1 i d l e f o r 1 TUS
processor number C 3 1 i d l e f o r 2 TUS
processor number C l Q l i d l e f o r 4 TUS
processor C i 1 assigned task C337
processor C 2 1 assigned task: E431
processor number C 4 1 i d l e f o r 1 TU3
processor number Cejl i d l e f o r 1 TUS
processor number C81 i d l e f o r 2 T U S
processor number C 9 1 i d l e f o r 3 TUS
processor number [IC)] i d l e f o r 5 TU5
proceszor C 3 1 assiuned t a s k C341
processor E 4 7 asjsigned task E451
processor numoer f5J i d l e f o r 1 TIJS
processor number Ccjl i d l e f o r 2 TUS
processor number til i d l s f o r 1 TUS
processor number C 8 1 i d l e +or 3 TUS
processor number C 9 1 i d l e f o r 4 TUS
processor number C 1 0 1 i d l e i a r b TUS
processor number C Z I idle f o r 1 TUS
processor number E 5 1 i d l e f o r 2 TUS
processor number Cbj i d l e f o r 3 TUS
processor number C'73 i d l e f o r 2 i l l s
processor nc,mber LEI:! i d l e fur 4 TUS

' processor number C 5 1 i d l e f o r 5 TFS
processor number L l G I i d l e +or 7 'TUS
processor C 1 1 assigned task C427

Schedule Complete

68

1

PE 1

33 42 11 21 I 25 ' 35
A

0 1 14 16 18 21 24 26
?

2
r

12 22 29 23 43

14 17 19 21 23 PE 3 0 1

3 13 24 34

0 1 PE 4 19 22 24

4
c *

14 26 36 45

1s 5

0 1 PE T 16 19 24

39

16 31 41 6

17 27 37 44 7
+ 4 0

8 ,

0 1 17
Gantt Chart of Optimal Schedule

- -
18 30

19 9 28 38 32

10 20

s t a r t (7

t ' = w (i)

= t rue
p (j)

I

= t (i) . a c t i v e - e (i) = o
L

(CONTINUED)

tl

I

= t (k k)
k k = i p (j) . t a s k

j=j-+l
e (k k) = O

p (j) . t ime
=w(kk)

p (j) . a c t i v e
= t r u e

t

r

_ Y n
k k = k k + l

1

k k = k k + l n

8
F l o w C h a r t f o r P r o c e d u r e ' S c h e d u l e '

7.2

i

j j = 1

I

j j = j j + l

n
1

Schedule
Comp 1 e t e

(-)

Flow Chart f o r Procedure 'Check Schedule' -

7 3

I L

~ (k) .time

p(k) .time-
:k=k+l

- -

n ,-

1=1

(CONTINUED)

7 4

0-
I

p(1) .active
= false

tmpl=p(l) .task
tmp=succ (tmpl)

tmp=0 -Q

1=1+1 I

Flowchart for Procedure 'Time - Processing'

75

de lay=
- p (11) . t ime

I

Y
Procedure

Schedule

d
Flowchart f o r Procedure QeaI.locat2

APPENDIX D

SCHEDULER ROUTINE IN PASCAL

77

~ X l * L * t t * a * * ~ * * * * * t * ! ~ * ~ * ~ * * * * * * * * * * ~ * * * * * ~ * ~ l ~ * ~ * * ~ * ~ * ~ * * *
The following F'ascal routine allocates tasks to a set of
processors inaccordance with the scheduling algorithm
already outlined in Chapter 3. The number of processing
elements is treated as a variable pararneter.The program
requires as input the fallowing:

1) The number of available PES denoted by 'In"
2) The number of defined tasks denoted by "tn"
3) The task matrix which is read from an input

data file
The program outputs the delay time o f each processor and
also the task: numbers which are assigned to a particular
processor. It keeps track of the time schedule o f each
processor by providing relevant information.

t * Z * * * * t ~ * * * * * * * * * * * ~ * * * * * ~ ~ * * t ~ * * * t ~ ~ * * * t * * * * $ ~ * ~ ~ : ~ ~ * ~ ~ ~ ~ ~ ~

program processor-schedul ing;

const
ma:.: -succ='J;

.C ma:.:-succ is the maximum number 0-f successors that can
be present at each node of the task graph. It can be
predefined to assume any v a l u e . I n this case it has been
defined to be equal to seven as this is adequate far the
task graph under consideration. :.

type
processor =r ecor d

time: inteqer: *C Each processor is defined as a record 2.
task: integer; .C the boolean field denotes whether a 3.
active:boolean; < processor is active i inactive 3

end;
proc= arrayC1. .201 of processor; .I ma:timum number of F'Es 3.
arraytype- arrayC1. .SO3 of integer;
successorarray=arrayLl. .50,1. .503 of integer;

var
ii,tn,n,inp,z,is:integer;
e,q,w,t:arraytvpe;
SLIC : s u c c e ~ s o r array;
p:proc;
f ilvarl, f ilvar2: text:
f 1,f 2:strinqC123;

78

p r o c e d u r e I N I f I kL I SE :

.
T h i s p r o c e d u r e i n t i a l i s e s a l l t h e PES b y making t h e
a c t i v e f i e l d f a l s e a n d s e t t i n g task t i m e and number = 0.
I t p r o v i d e s the s c h e d u l e r w i t h a set o f PEs that are
r e a d y t u be a s s i g n e d t o i n c u m b e n t tasks.
****~******t*t*****1~**~~L~*$********~*******1******~~

v a r
k i : i n t e g e r ;

5

b e g i n
f o r k i : = l t o n do

b e g i n
p t k i 3 . time: =I.:);

p t k i l . t a s k : = C) ;
p C k i 3 . a c t i v e : =f a1 se:

end;
e n d ;

p r o c e d u r e SCHEDULE:

~ ~ * ~ t * ~ 2 * ~ * * * * * * * * * * b * * * ~ * * * ~ * * * * * b * ~ * ~ * * * ~ * ~ ~ * ~ ~ * ~ * 2 * * ~ ~ ~
T h i s p r o c e d u r e a l loca tes a set of a v a i l a b l e tasks t o a
set o f processors t h a t are i n a c t i v e o r svai lable . A t : t r r
i n i t i a l a s s i g n m e n t , i t c h e c k s whether all tasks have been
s c h e d u l e d by i n v o k i n g t h e p r o c e d u r e c h e c k - s c h e d u l e.
* * * X L t * * t ~ ~ * * * ~ ~ ~ * # K * # * * * * * * * * t ~ * $ * * * * * * * * ~ ~ * * * * * t * ~ * * ~ * ~ * ~ ~

l a b e l
s t a r t , m a r k ;

79

p r o c e d u r e T I ME-FROCESS ING;

~ ~ * * * * * * * * * * * * * ~ ~ Y * * * * * ~ * * * * * * * * * * * * * * ~ * * * * * * * ~ * * * * ~ * * *
T h i s p r o c e d u r e d e c r e m e n t s t h e t i m e f i e l d of e a c h
p r o c e s s o r a n d a f t e r e a c h d e c r e m e n t make5 a s e l f c h e c k
t o a s c e r t a i n w h e t h e r a n y p r o c e s s o r is i d l e . I f a l l
p r o c e s s o r s a re active t h e n i t c o n t i n u e s d e c r e m e n t i n q .
I f a n y p r o c e s s o r is i d l e , i t i n v o k e s t h e p r o c e d u r e
reallocate f o r rea l loca t ion of a n y a v a i l a b l e task.: t o
t h e i d l e p r o c e s s o r ,*' p r o c e s s o r s .
* * ~ t * l * t ~ * ~ * * * * f * * * * * * * ~ * ~ ~ * ~ * ~ * ~ ~ ~ ~ ~ * * * * ~ * * ~ ~ ~ * ~ * * * ~ .

1 ? b e l
sl 9 52;

v a r
k 1 temp 1 t emp , -i k I::. n o - s ~ i c c . ma:.: -i t : i n t eger :

p r o c e d u r e REALLOCATE;

~ ~ * ~ * * * * * * * * * * * l * * * l t * ~ * * * * * * ~ * * ~ * * * * ~ * * * * * * * ~ f * ~ ~ * * ~ ~ ~ * *
T h i s p r o c e d u r e h a n d l e s s i t u a t i o n s when ~501ne p r o c e s s o r s
become f r e e d u e t o task c o m p l e t i o n w h i l e some a re s t i l l
a c t i v e . The idle pracessors are assigned t o incumbent
tasks. If n o tasks a r e a v a i l a b l e , t h e n i d l e t i m e
is r e c o r d e d f o r t h e i n a c t i v e p r o c e s s o r s . A f t e r p o s n i b : l e
r ea l loca t ion , t h e main s c h e d u l i n g p r o g r a m is a g a i n i n v o k e d .
t * * X * l * t * * * * * * * % * Y * * * * * * l * ~ * * * * ~ * * ~ : ~ * ~ * * * * * ~ : ~ * ~ * * * * * * ~ ~ * * ~ ~

v a r
1 1 , d e l a y : i n t e y e r ;

8 0

I

I

.
begin .: of REALLOCATE 3

ll:=l;
f1:if pC11l.time .::= C! then

begin
if pC113,time .::: 0 then

begin
delay:= -IpCllI.time!;

writeln(filvar2,3 processor number C'.11,21 idle for ',delay, ' T U S ') ;
end;
11:=11+1;
if 1 1 ::. n then
S C HED U LE
else gcto f1 :

end

begin
else

11 :=11+1:
if 11 > n then

SCHEDULE ;
begin

end

got0 .f 1;
end:

else

end j .: OS REALLOCAT'E 3.

begin .: o f TIME-PROCESSING 2.
k : = l ;
sl: pCkl.time:=pCkl. time-1:
k:=k+l;
if k 3 n then

begin
l:=i:
s2:if pC1l.time = (1) then

begin
pC11. active: =f a1 se;
templ:=pClI.ta~,C::;
no-s;ucc:= sucLtemo1, 11:

81

I

ma:< -it : =nc)-succ+l;
f o r _ikk:=2 t o m a x - i t do

beg in
temp : =sue C t e m p 1 -i 1: C:: 1 :
if temp .::> fJ then

beg in
q Ctemp 3 : =qt temp 3-1 :

i f qtternpJ=C) then e C t e m p I : = l ;
e n d :

end ;
1:=141;
i f 1 :::. n then

else
REALLOCATE

goto 52;
end

beg in
else

1:=141;
i f 1 :::. n then

begin

end
REALLOCATE:

else
goto 52;

e n d :
end

beg in

end;

el ss

goto 51:

end;

82

p r o c e d u r e CHECK -SCHEDULE;

~ ~ * * * * * * * * * * * * * * * * * S * * * ~ * * * * * * * * * * * * * * * : ~ * * * * * ~ ~ * * * * * ~ ~ * ~
T h i s p r o c e d u r e e x a m i n e s t h e task m a t r i x t o e n s u r e t h a t
s c h e d u l i n g is c o m p l e t e , t h a t is, t h e task q r a p h h a s b e e n
c o m p l e t e l y e x e c u t e d . I f n o t . i t invo1::es p r o c e d u r e
t i m e g r o c e s s i n q t o b e g i n t a s k e x e c u t i o n o n c e a g a i n .
I f a l l o c a t i o n is c o m p l e t e , i t i n d i c a t e s t h i s b y d i s p l a y i n g
" S c h e d u l e C o m p l e t e . 'I

X * * * * * * * * * * * * * ~ * * t * * ~ * * * * ~ ~ ~ * * * * * * * * * ~ * * * * * ~ * ~ * * * * * * ~ ~ ~ ~

1 a b e l
11;

v a r . .
JJ: i n t e g e r :

b e g i n
j j := l ;
11: i f e C j j J = (:)) a n d I q C j j 3 = 0) t h e n

b e g i n
j j : =j j + 1 :
i f jj 1:. t n t h e n

b e g i n

e n d
else

b e g i n

e n d ;

w r i t e l n (f i lvat-2, ' S c h e d u l e Cornplete ' l :

g o t 0 11:

e n d

begin

e n d ;

else

TIME-F'HOCESSING:

e n d j

8 3

i

beqin .: of SCHEDULE 2.
i:=I;
j:=l;
start: if j 3 n then

CHECK-SCHEDULE :
begin

end

begin
else

if pCj1,active = f a l s e then
beqin

if eCil=l then
begin

pC-il. tirne:=wCi7:
pC-il.active:=trueg
pC-il. tasC:::=tfi 1;
eCi 1: =il;

i:=i+l= 9

writeln(filvar2,' processor C',j,?I assigned task:: C 7 q i p ' 7 1 7) :

j:=j+l;
goto s t a r t ;

end

beqin
else

1:: 1:: : = i ;
mark: iS eCkC::I:=l then

begin
p C j 3 . ti me: =w C 1::k:: 1 :
pCjl.active:=true;
p C j 3 . task:: : =t C I::I:: 7 ;
e I: k I:: 1 : =(I) ;

j: =j+l ;
gotc start;

writeln(filvar2,' prcrcessor C ' , - i . ' l assiqned task C ' , k l : : . ' J 7 j ;

end

begin
else

i f qCI::C::l =(I then
begin

k 1; : = 1:; I:: + 1 5

8 4

if ki:: 1:. t n then
beg in

end

beg in

end;

CHECK-SCHEDULE ;

else

goto mar I.:: :

end

begin
c:: k : = I.:: I:: + 1. ;
if ki:: :::. tn %hen

beg in

end

begin

end;

else

CHEC t::: -SC HE5 U L E :

el 5e

goto m a r k :

end;
end;

end;
end

el se
begin

-i : =j+l ;
goto start:

end;
end:

end;

85

end.

begin .:of M A I N 3
writeln (‘input number o f pracesrurs’ 1 :
readln (n);
writeln(’ SELECT INPUT DATA FILE ’) j
writeln(’ OPTIONS-Tl.DAT/T2.DAT ’) ;

readln(f1);
assign (f i lvar 1. f 1) ;
reset(filvar1):
writeln(’ SELECT OUTPUT DATA FILE ’ 1 ;
writeln(’ OPTIONS- Rl.DAT/F;2.DAT ’) ;

readln (f a) :
assi qn if i lvar22 f 2) ;
rewriteifilvar2):
writeln (f ilvar2, ’ TASK ALLOCGTION ’) ;
writsln (f i lvar2. ’THE blUMBER O F FFXICESSOES USED=’ , tr) ;
readlnifilvar1,tn);
writelnifilvar2. ’THE NUMBER OF DEFINED TASKS=’, tns:
for ii:=l to tn do
begin

end ;
for ii:=l to tn do

t Ci i 3 : =i i :

begin

end;
for ii:=l to tn do

readl n (+ i lvar 1. el: i i 3 > ;

begin

end;
for ii:=l to tn do

readl n (f i 1 var 1, q C i i 1 ;I :

begin
for i s : = l to ma:.:-succ do

begin

end ;
r @ad 1 n (f i 1 var 1 . suc C i i . i s 3 1 :

end;
for ii:=l to tn do

begin

end;
INITIALISE:
SCHEDULE;
clase(filvar2>:

readl n < f i 1 var 1, wT_ i i 1 i :

I

